Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Parasite Immunol ; 44(8): e12936, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35586956

RESUMO

In endemic regions concurrent infection with multiple gastrointestinal (GI) helminth species is more common than single species infection. However, the majority of model helminth infections focus on single species infections leading to a lack of understanding of how co-infection influences anti-parasite immune responses. Here, we use a model co-infection of Trichuris muris (Tm) and Heligmosomoides bakeri (Hb) to investigate the effect of Hb on anti-Tm immune responses. We observed a complete impairment of Tm expulsion in immune competent C57BL/6 mice when co-infected with Hb. This was coupled with reduced cellularity in the colonic mesenteric lymph node (cMLN) proximal to the caecum, however, cMLN cytokine responses and caecal mucosal immune responses in co-infected mice were not significantly different from mice infected with Tm alone. Interestingly, in immune-compromised mice, we found co-infection resulted in enhanced growth and fecundity of female Tm parasites. These data suggest that during helminth-helminth co-infection, immune-independent signals between species may promote survival and growth.


Assuntos
Coinfecção , Helmintíase , Parasitos , Tricuríase , Animais , Citocinas , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Trichuris
2.
Nat Commun ; 13(1): 1725, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365634

RESUMO

Whipworms are large metazoan parasites that inhabit multi-intracellular epithelial tunnels in the large intestine of their hosts, causing chronic disease in humans and other mammals. How first-stage larvae invade host epithelia and establish infection remains unclear. Here we investigate early infection events using both Trichuris muris infections of mice and murine caecaloids, the first in-vitro system for whipworm infection and organoid model for live helminths. We show that larvae degrade mucus layers to access epithelial cells. In early syncytial tunnels, larvae are completely intracellular, woven through multiple live dividing cells. Using single-cell RNA sequencing of infected mouse caecum, we reveal that progression of infection results in cell damage and an expansion of enterocytes expressing of Isg15, potentially instigating the host immune response to the whipworm and tissue repair. Our results unravel intestinal epithelium invasion by whipworms and reveal specific host-parasite interactions that allow the whipworm to establish its multi-intracellular niche.


Assuntos
Helmintos , Tricuríase , Animais , Mucosa Intestinal , Intestinos/parasitologia , Mamíferos , Camundongos , Trichuris/fisiologia
3.
Parasitology ; : 1-7, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34075864

RESUMO

Trichuris, whipworm nematode infections are prevalent in humans, domestic livestock and mammals. All share an epithelial dwelling niche and similar life cycle with the chronic infections that follow implying that immune evasion mechanisms are operating. Nematode excretory secretory (ES) products have been shown to be a rich source of immunomodulatory molecules for many species. The Trichuris muris model is a natural parasite of mice and has been used extensively to study host­parasite interactions and provides a tractable platform for investigation of the immunoregulatory capacity of whipworm ES. The present review details progress in identification of the composition of T. muris ES, immunomodulatory components and their potential mechanisms of action. The adult T. muris secretome is dominated by one protein with modulatory capacity although remains to be completely characterized. In addition, the secretome contains multiple other proteins and small molecules that have immunomodulatory potential, certainly by comparison to other Trichuris species. Moreover, T. muris-derived exosomes/exosome-like vesicles contain both protein and multiple miRNAs providing an alternate delivery process for molecules with the potential to modulate host immunity.

4.
J Exp Med ; 216(12): 2714-2723, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31582416

RESUMO

Host immunity to parasitic nematodes requires the generation of a robust type 2 cytokine response, characterized by the production of interleukin 13 (IL-13), which drives expulsion. Here, we show that infection with helminths in the intestine also induces an ILC2-driven, IL-13-dependent goblet cell hyperplasia and increased production of mucins (Muc5b and Muc5ac) at distal sites, including the lungs and other mucosal barrier sites. Critically, we show that type 2 priming of lung tissue through increased mucin production inhibits the progression of a subsequent lung migratory helminth infection and limits its transit through the airways. These data show that infection by gastrointestinal-dwelling helminths induces a systemic innate mucin response that primes peripheral barrier sites for protection against subsequent secondary helminth infections. These data suggest that innate-driven priming of mucus barriers may have evolved to protect from subsequent infections with multiple helminth species, which occur naturally in endemic areas.


Assuntos
Imunidade Inata , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Mucosa/imunologia , Mucosa/metabolismo , Muco/metabolismo , Animais , Proteção Cruzada/imunologia , Células Caliciformes/citologia , Células Caliciformes/metabolismo , Hiperplasia , Interleucina-13/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/parasitologia , Masculino , Camundongos , Camundongos Knockout , Mucinas/biossíntese , Trichinella spiralis/imunologia , Triquinelose/imunologia , Triquinelose/parasitologia
5.
Nat Commun ; 10(1): 2344, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138806

RESUMO

Infection by soil transmitted parasitic helminths, such as Trichuris spp, are ubiquitous in humans and animals but the mechanisms determining persistence of chronic infections are poorly understood. Here we show that p43, the single most abundant protein in T. muris excretions/secretions, is non-immunogenic during infection and has an unusual sequence and structure containing subdomain homology to thrombospondin type 1 and interleukin (IL)-13 receptor (R) α2. Binding of p43 to IL-13, the key effector cytokine responsible for T. muris expulsion, inhibits IL-13 function both in vitro and in vivo. Tethering of p43 to matrix proteoglycans presents a bound source of p43 to facilitate interaction with IL-13, which may underpin chronic intestinal infection. Our results suggest that exploiting the biology of p43 may open up new approaches to modulating IL-13 function and control of Trichuris infections.


Assuntos
Proteínas de Helminto/metabolismo , Interleucina-13/metabolismo , Enteropatias Parasitárias/metabolismo , Proteoglicanas/metabolismo , Trichuris/metabolismo , Animais , Matriz Extracelular/metabolismo , Proteínas de Helminto/imunologia , Interleucina-13/imunologia , Subunidade alfa2 de Receptor de Interleucina-13/metabolismo , Enteropatias Parasitárias/imunologia , Camundongos , Homologia de Sequência de Aminoácidos , Trombospondina 1/metabolismo , Tricuríase
6.
Sci Rep ; 8(1): 4508, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29540816

RESUMO

Trichuris trichiura (whipworm) is one of the four major soil-transmitted helminth infections of man, affecting an estimated 465 million people worldwide. An effective vaccine that induces long-lasting protective immunity against T. trichiura would alleviate the morbidity associated with this intestinal-dwelling parasite, however the lack of known host protective antigens has hindered vaccine development. Here, we show that vaccination with ES products stimulates long-lasting protection against chronic infection in male C57BL/6 mice. We also provide a framework for the identification of immunogenic proteins within T. muris ES, and identify eleven candidates with direct homologues in T. trichiura that warrant further study. Given the extensive homology between T. muris and T. trichiura at both the genomic and transcriptomic levels, this work has the potential to advance vaccine design for T. trichiura.


Assuntos
Antígenos de Helmintos/imunologia , Vacinas Protozoárias/imunologia , Tricuríase/prevenção & controle , Trichuris/imunologia , Vacinação , Animais , Anticorpos Anti-Helmínticos/imunologia , Proteínas de Helminto/imunologia , Proteínas de Helminto/metabolismo , Masculino , Camundongos , Proteômica/métodos , Trichuris/metabolismo
7.
Sci Adv ; 4(3): eaap7399, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29546242

RESUMO

Intestinal dwelling parasites have evolved closely with the complex intestinal microbiota of their host, but the significance of the host microbiota for metazoan pathogens and the role of their own intestinal microbiota are still not fully known. We have found that the parasitic nematode Trichuris muris acquired a distinct intestinal microbiota from its host, which was required for nematode fitness. Infection of germ-free mice and mice monocolonized with Bacteroides thetaiotaomicron demonstrated that successful T. muris infections require a host microbiota. Following infection, T. muris-induced alterations in the host intestinal microbiota inhibited subsequent rounds of infection, controlling parasite numbers within the host intestine. This dual strategy could promote the long-term survival of the parasite within the intestinal niche necessary for successful chronic nematode infection.


Assuntos
Interações Hospedeiro-Parasita , Microbiota , Parasitos/microbiologia , Tricuríase/microbiologia , Trichuris/fisiologia , Imunidade Adaptativa/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Interações Hospedeiro-Parasita/efeitos dos fármacos , Interações Hospedeiro-Parasita/imunologia , Intestinos/microbiologia , Intestinos/parasitologia , Camundongos Endogâmicos C57BL , Microbiota/efeitos dos fármacos , Parasitos/efeitos dos fármacos , Parasitos/imunologia , Tricuríase/imunologia , Trichuris/efeitos dos fármacos
8.
Nat Genet ; 50(3): 452-459, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29459678

RESUMO

Methylation at the 5 position of cytosine in DNA (5meC) is a key epigenetic mark in eukaryotes. Once introduced, 5meC can be maintained through DNA replication by the activity of 'maintenance' DNA methyltransferases (DNMTs). Despite their ancient origin, DNA methylation pathways differ widely across animals, such that 5meC is either confined to transcribed genes or lost altogether in several lineages. We used comparative epigenomics to investigate the evolution of DNA methylation. Although the model nematode Caenorhabditis elegans lacks DNA methylation, more basal nematodes retain cytosine DNA methylation, which is targeted to repeat loci. We found that DNA methylation coevolved with the DNA alkylation repair enzyme ALKB2 across eukaryotes. In addition, we found that DNMTs introduced the toxic lesion 3-methylcytosine into DNA both in vitro and in vivo. Alkylation damage is therefore intrinsically associated with DNMT activity, and this may promote the loss of DNA methylation in many species.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Dano ao DNA , Metilação de DNA/fisiologia , Evolução Molecular , Animais , Caenorhabditis elegans , Sequência Conservada , Elementos de DNA Transponíveis/fisiologia , Eucariotos/classificação , Eucariotos/genética , Humanos , Mermithoidea , Camundongos , Camundongos SCID , Nematoides/classificação , Nematoides/genética , Filogenia , Alinhamento de Sequência , Análise de Sequência de Proteína , Trichuris
9.
PLoS One ; 10(5): e0125945, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25938477

RESUMO

Trichuris species are a globally important and prevalent group of intestinal helminth parasites, in which Trichuris muris (mouse whipworm) is an ideal model for this disease. This paper describes the first ever highly controlled and comprehensive investigation into the effects of T. muris infection on the faecal microbiota of mice and the effects on the microbiota following successful clearance of the infection. Communities were profiled using DGGE, 454 pyrosequencing, and metabolomics. Changes in microbial composition occurred between 14 and 28 days post infection, resulting in significant changes in α and ß- diversity. This impact was dominated by a reduction in the diversity and abundance of Bacteroidetes, specifically Prevotella and Parabacteroides. Metabolomic analysis of stool samples of infected mice at day 41 showed significant differences to uninfected controls with a significant increase in the levels of a number of essential amino acids and a reduction in breakdown of dietary plant derived carbohydrates. The significant reduction in weight gain by infected mice probably reflects these metabolic changes and the incomplete digestion of dietary polysaccharides. Following clearance of infection the intestinal microbiota underwent additional changes gradually transitioning by day 91 towards a microbiota of an uninfected animal. These data indicate that the changes in microbiota as a consequence of infection were transitory requiring the presence of the pathogen for maintenance. Interestingly this was not observed for all of the key immune cell populations associated with chronic T. muris infection. This reflects the highly regulated chronic response and potential lasting immunological consequences of dysbiosis in the microbiota. Thus infection of T. muris causes a significant and substantial impact on intestinal microbiota and digestive function of mice with affects in long term immune regulation.


Assuntos
Interações Hospedeiro-Parasita , Metaboloma , Microbiota , Tricuríase/metabolismo , Tricuríase/microbiologia , Tricuríase/parasitologia , Trichuris , Animais , Anti-Helmínticos/administração & dosagem , Anti-Helmínticos/farmacocinética , Bactérias/classificação , Bactérias/genética , Biodiversidade , Doença Crônica , Modelos Animais de Doenças , Metabolômica/métodos , Metagenoma , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Tempo , Tricuríase/tratamento farmacológico , Trichuris/efeitos dos fármacos , Trichuris/imunologia
10.
Immunol Rev ; 260(1): 183-205, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24942690

RESUMO

Immune responses to gastrointestinal nematodes have been studied extensively for over 80 years and intensively investigated over the last 30-40 years. The use of laboratory models has led to the discovery of new mechanisms of protective immunity and made major contributions to our fundamental understanding of both innate and adaptive responses. In addition to host protection, it is clear that immunoregulatory processes are common in infected individuals and resistance often operates alongside modulation of immunity. This review aims to discuss the recent discoveries in both host protection and immunoregulation against gastrointestinal nematodes, placing the data in context of the specific life cycles imposed by the different parasites studied and the future challenges of considering the mucosal/immune axis to encompass host, parasite, and microbiome in its widest sense.


Assuntos
Trato Gastrointestinal/imunologia , Trato Gastrointestinal/parasitologia , Interações Hospedeiro-Parasita , Imunidade Adaptativa , Animais , Doença Crônica , Trato Gastrointestinal/metabolismo , Humanos , Imunidade Inata , Imunomodulação , Mucosa/imunologia , Mucosa/metabolismo , Mucosa/parasitologia , Nematoides/fisiologia , Infecções por Nematoides/imunologia , Infecções por Nematoides/metabolismo , Infecções por Nematoides/parasitologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
11.
Nat Genet ; 46(7): 693-700, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24929830

RESUMO

Whipworms are common soil-transmitted helminths that cause debilitating chronic infections in man. These nematodes are only distantly related to Caenorhabditis elegans and have evolved to occupy an unusual niche, tunneling through epithelial cells of the large intestine. We report here the whole-genome sequences of the human-infective Trichuris trichiura and the mouse laboratory model Trichuris muris. On the basis of whole-transcriptome analyses, we identify many genes that are expressed in a sex- or life stage-specific manner and characterize the transcriptional landscape of a morphological region with unique biological adaptations, namely, bacillary band and stichosome, found only in whipworms and related parasites. Using RNA sequencing data from whipworm-infected mice, we describe the regulated T helper 1 (TH1)-like immune response of the chronically infected cecum in unprecedented detail. In silico screening identified numerous new potential drug targets against trichuriasis. Together, these genomes and associated functional data elucidate key aspects of the molecular host-parasite interactions that define chronic whipworm infection.


Assuntos
Perfilação da Expressão Gênica , Genoma Helmíntico , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/imunologia , Células Th1/imunologia , Tricuríase/genética , Trichuris/genética , Animais , Humanos , Intestinos/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Filogenia , Especificidade da Espécie , Tricuríase/imunologia , Tricuríase/parasitologia , Trichuris/imunologia
12.
Trends Parasitol ; 28(3): 93-8, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22257556

RESUMO

Mammals, microflora and gut-dwelling macrofauna have co-evolved over many millions of years until relatively recently when the geographical prevalence of macrofauna in humans has become restricted to the developing world. Immune homeostasis relies on a balance in the composition of intestinal microflora; long-lived macrofauna have also been shown to regulate immune function, and their absence in Western lifestyles is suggested to be a factor for the increasing frequency of allergy and autoimmunity. The intestinal nematode Trichuris muris was recently demonstrated to utilise microflora to initiate its life cycle. The interdependence on one another of all three factors is such that when the balance is perturbed it must be realigned or the consequences may be detrimental to the mammalian host.


Assuntos
Imunidade Celular/fisiologia , Intestinos/microbiologia , Tricuríase/imunologia , Tricuríase/parasitologia , Trichuris/fisiologia , Animais , Humanos
13.
Immunol Rev ; 201: 75-88, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15361234

RESUMO

Gastrointestinal nematode infection is extremely prevalent worldwide in humans and animals. Infection levels vary between individuals in infected populations and exhibit a negative binomial distribution, and some individuals appear to be predisposed to certain infection levels. Moreover, infection tends to be chronic, despite evidence for the acquisition of some degree of acquired immunity. The host is subject to constant and repeated antigenic challenge, and individuals vary in the response they make. While a considerable amount of information is emerging on the immunoregulatory mechanisms operating during acute nematode infection from a variety of laboratory model systems, relatively little work has been carried out on the immune mechanisms underlying chronic infection. This review details some of the work that has addressed this important facet of gut nematode infection, highlighting studies from model systems that give insight into the induction of nonprotective immunity, while at the same time avoiding the induction of host-damaging pathology.


Assuntos
Regulação da Expressão Gênica , Enteropatias Parasitárias/imunologia , Infecções por Nematoides/imunologia , Infecções por Nematoides/fisiopatologia , Animais , Doença Crônica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Infecções por Nematoides/parasitologia , Estrongilídios/imunologia , Infecções por Strongylida/imunologia , Infecções por Strongylida/parasitologia , Infecções por Strongylida/fisiopatologia , Tricuríase/imunologia , Tricuríase/parasitologia , Tricuríase/fisiopatologia , Trichuris/imunologia
14.
J Immunol ; 172(12): 7635-41, 2004 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-15187144

RESUMO

Chronic infection by the gastrointestinal nematode Trichuris muris in susceptible AKR mice, which mount a Th1 response, is associated with IL-27p28 expression in the cecum. In contrast to wild-type mice, mice that lack the WSX-1/IL-27R gene fail to harbor a chronic infection, having significantly lower Th1 responses. The lower level of Ag-specific IFN-gamma-positive cells in WSX-1 knockout (KO) mice was found to be CD4(+) T cell specific, and the KO mice also had increased levels of IL-4-positive CD4(+) T cells. Polyclonal activation of mesenteric lymph node cells from naive WSX-1 KO or wild-type mice demonstrated that there was no inherent defect in the production of IFN-gamma by CD4(+) T cells, suggesting the decrease in these cells seen in infected WSX-1 KO mice is an in vivo Ag-driven effect. IL-12 treatment of WSX-1 KO mice failed to rescue the type 1 response, resulting in unaltered type-2-driven resistance. Infection of WSX-1 KO mice was also associated with a reduction of IL-27/WSX-1 downstream signaling gene expression within the cecum. These studies demonstrate an important role for WSX-1 signaling in the promotion of type 1 responses and chronic gastrointestinal nematode infection.


Assuntos
Enteropatias Parasitárias/imunologia , Receptores de Citocinas/fisiologia , Tricuríase/imunologia , Animais , Ceco/metabolismo , Ceco/parasitologia , Doença Crônica , Regulação da Expressão Gênica/imunologia , Interferon gama/biossíntese , Interleucina-12/farmacologia , Contagem de Linfócitos , Camundongos , Camundongos Knockout , Infecções por Nematoides/imunologia , Receptores de Citocinas/biossíntese , Receptores de Citocinas/genética , Receptores de Interleucina , Transdução de Sinais , Células Th1/imunologia
15.
Clin Rev Allergy Immunol ; 26(1): 51-60, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14755075

RESUMO

Gastrointestinal nematode parasites are one of the most prevalent types of infection worldwide. Evidence from both laboratory and human systems indicates that when resistance is evident immunity is mediated by effector mechanisms controlled by T helper 2 type responses. Moreover, more recent evidence implicates a central role for interleukin 13. We raise the possibility that gut dwelling nematodes may have been an important driving force in the development of Th 2 responses involving IL-13. Moreover, that these parasites have evolved a variety of strategies to avoid destruction and to regulate any potential pathology associated with chronic infection.


Assuntos
Interleucina-13/imunologia , Enteropatias Parasitárias/prevenção & controle , Infecções por Nematoides/prevenção & controle , Animais , Suscetibilidade a Doenças/imunologia , Humanos , Células Th2/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA